If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4x^2-382=72
We move all terms to the left:
4x^2-382-(72)=0
We add all the numbers together, and all the variables
4x^2-454=0
a = 4; b = 0; c = -454;
Δ = b2-4ac
Δ = 02-4·4·(-454)
Δ = 7264
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{7264}=\sqrt{16*454}=\sqrt{16}*\sqrt{454}=4\sqrt{454}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-4\sqrt{454}}{2*4}=\frac{0-4\sqrt{454}}{8} =-\frac{4\sqrt{454}}{8} =-\frac{\sqrt{454}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+4\sqrt{454}}{2*4}=\frac{0+4\sqrt{454}}{8} =\frac{4\sqrt{454}}{8} =\frac{\sqrt{454}}{2} $
| 2x+5=-2x+41 | | (4x+13)+(2x+14)=180 | | 5(3)-7(7)=x | | 2(9s+2)=-28 | | 3-y^2=28 | | 2x/6+1=2x+3x/2 | | x+17=5x+41 | | 18t^2-50=0 | | 5x+2=8x=7 | | .31=1.49-(x+.20) | | A+(12a)+(7a)=100 | | (9x)^2+(16x)^2=1024 | | a(a^2+2a-1)-2=0 | | (9x)^2+(16x)^2=32 | | 1-0.98^x=0.5 | | x+57=5x+21 | | 16g+-11=-5 | | -10x2+5x=0 | | 2s2+8s+8=0 | | 42a^2-26a+4=0 | | 6x+6x+8x=540 | | 4u2+5u+7=0 | | (2x+1)(4x-21)=0 | | x+(0.2x)=18360 | | 4x(5-2)=x2 | | x+(0.2x)=11352 | | 8x^2+4x-21=0 | | 8b^2+256=-96b | | 5x+25=x-3 | | x+(0.2x)=120 | | 2x+25=6x+61 | | 3.296=-0.004d^2+0.144d |